

Гамма-спектрометр «GM-Gamma» для наземной и аэросъёмки с применением БПЛА

Е.Ю. Ермолин* (ООО «ДЖИ М Сервис»), А.А. Миллер (ООО «ДЖИ М Сервис»)

Введение

Гамма-спектрометрическая съёмка имеет преимущества при решении рядя геологоразведочных задач. Наиболее важным преимуществом является определение концентраций элементов U, Th, K и их соотношения. Результаты гамма-спектрометрической съёмки могут отражать как прямые, так и косвенные признаки наличия оруденения. В комплексе геологоразведочных работ гамма-спектрометрия играет важную роль при картировании и прогнозе месторождений. Кроме поисковых задач гамма-спектрометрия может решать и другие задачи: экологический мониторинг, геоморфологическое районирование и пр. При наличии ниши для решения задач остаётся проблематичным найти доступный и удобный в применении прибор для выполнения гаммаспектрометрической съёмки. Имеющиеся приборы либо обладают малыми кристаллами, либо большой массой [1-5]. Важным моментом является соотношение массы кристалла к общей массе прибора. Этот показатель важен при выполнении съёмки с использованием технологии БПЛА. Чем выше этот показатель, тем эффективнее можно использовать прибор, применяя беспилотные технологии.

Авторы поставили перед собой задачу создания гамма-спектрометра с кристаллом объёмом 1 литр и общей массой, не превышающей 6 кг. Также необходимо было обеспечить стабилизацию спектра и бесперебойную работу прибора на одной сменной аккумуляторной батарее (АКБ) в течении 5-ти часов, возможность оперативной замены АКБ и работы от внешнего источника питания.

Методика

В первую очередь авторами работы были проанализированы достоинства и недостатки имеющихся гамма-спектрометров. Ряд доступных спектрометров представлен на сайтах производителей, часть ссылок приведена в списке литературы данной статьи [1-5]. Наиболее существенными недостатками являются:

- малый объём кристалла;
- отсутствие стабилизации спектра;
- малое соотношение массы кристалла к общей массе прибора;
- отсутствие внутреннего GPS для определения координат и времени;

Изучив недостатки имеющихся аналогов, авторы разработали собственный прибор.

Результат

В результате было предложено исполнение прибора для 2-х вариантов — для съёмки БПЛА и для наземной съёмки. Для наземной съёмки прибор выполнен в корпусе, распечатанном на 3D-принтере. Сделано это с целью уменьшения стоимости наземного варианта. Для съёмки с применением БПЛА предусмотрен корпус из пластика и стекловолокна, а кристалл расположен внутри на специальном амортизирующем устройстве, чтобы при падении с небольшой высоты кристалл не повреждался. Основные характеристики прибора представлены в таблице 1.

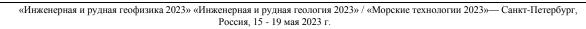


 Таблица 1

 Основные технические характеристики Гамма-спектрометра «GM-Gamma»

Габариты прибора	
Диаметр	141 мм
Длина (высота)	364 мм
Общий вес в стандартной комплекта-	
ции для наземной съёмки (включая	5,97 кг
сменный АКБ)	
Характеристики детектора	
Кристалл	Монокристаллический сцинтиллятор NaI (Tl)
Диаметр кристалла	100 мм
Высота кристалла	125 мм
Объём кристалла	1 литр (982 мл)
Тип ФЭУ	R1307
Энергетическое разрешение	7,5%
Особенности записи данных	
Число каналов	4096
Разрядность каналов	16 бит
Мёртвое время	10 мкс
Характеристики питания	
Ёмкость штатного аккумулятора	2200 мАч
Напряжение питания	12 B
Время работы на штатном сменном	5.5
аккумуляторе	5,5 часов
Потребляемая мощность	4,5 BT
Хранение и передача данных	
Устройство хранения	Съёмный USB-флеш-накопитель
Способ передачи данных	Wi-Fi, USB-порт, флеш-карта
Общие характеристики прибора	
Управление прибором	Через специализированное ПО через Wi-Fi
Встроенные модули	Wi-Fi
	GPS
	Высокоточный барометрический высотомер
	Термометр
Класс защиты от пыли и влаги	IP67
Рабочая температура	-20 – +50 (°C)
Стабилизация шкалы	Аппаратная по пику Th-232
Индикация	Светодиоды на корпусе
Режимы работы	Тестовый – накопление и визуализация спектра
	Рабочий режим – набор и запись спектра каждую се-
	кунду
	Режим передачи данных



В настоящей работе в качестве результата показаны стабилизированные спектры, полученные прибором в лабораторных условиях. Измерения выполнялись как вблизи источника радиоактивного источника (Th), так и при отсутствия последнего.

На рисунке 1 показаны три спектра, набранные каждый за один час. Два спектра (a' и k) набраны с промежутком по времени 10 часов и измерены в присутствии образца Th, спектр h набран отдельным измерением за час и измерен без образца Th, то есть представляет из себя излучение фона. Видно, что стабилизация энергетической шкалы в процессе работы позволяет получить практически идентичные спектры в одинаковых условиях. Стабилизация проводится с помощью бортового сигнального процессора, который суммирует импульсы, приходящие в два энергетических окна по склонам пика Th, и выравнивает счет в них путем управления высоковольтным преобразователем питания ФЭУ. Алгоритм реализован по аналогии с запатентованным алгоритмом Артемьева и др [6]. В результате наличия стабилизации спектр стабилен при изменении температуры кристалла и направления магнитного поля Земли.

Рисунок 1. Три спектра, набранные за час; зеленая линия - фон, красная и черная — образец Th, даны линии тренда (скользящее среднее по 11 точкам); желтая линия — энергетическая шкала с пиками Th, U, K энергий 238, 336, 580, 609, 907, 1460, 1760, 2620 кэВ.

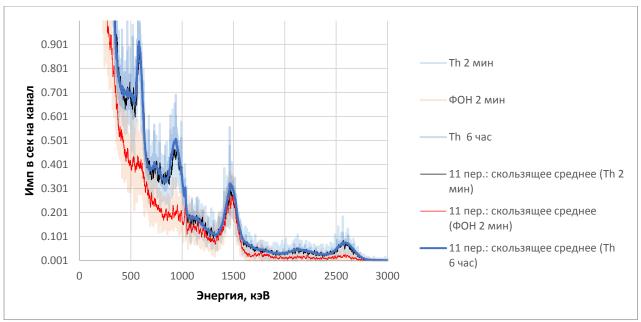

Следует отметить некоторые особенности технических характеристик прибора. Большой объем кристалла и малое (10 мкс) время обработки одного импульса ФЭУ («мертвое время») позволяет получить высокие скорости счета. Например, для спектра «фона» набор в энергетическом окне 2480 – 2780 кэВ (пик Тh) составляет в среднем за секунду 4,5 импульса. Таким образом, точность 0,15 (15%) измерения счета в этом окне будет достигнута за 10 секунд. Спектры, накопленные за 6 часов вблизи источника Th, и накопленные за 2 минуты с источником и без источника показаны на рисунке 2. Мы видим, что нет принципиальной разницы между спектрами, накопленными за 6 часов и за 2 минуты.

Рисунок 2. Спектры, накопленные за 2 минуты и за 6 часов вблизи источника Th и при отсутствии источника.

Выводы

Большой объем кристалла и малое «мертвое время» спектрометра позволяют получить высокие скорости счета, что при пешеходной съемке позволит проводить замеры с непрерывным движением 5 км в час (1.4 м/сек) с осреднением по отрезкам около 15 м. Наличие встроенного GPS/GLONASS позволяет непрерывно записывать координаты, что упрощает методику съёмки.

Гамма-спектрометр в полной комплектации (в корпусе, распечатанном на 3D-принтере и со штатным аккумулятором), имеет небольшую общую массу (5970 грамм) при массе кристалла (NaI) 3600 грамм. Высокая чувствительность и автономность позволяют использовать прибор как для непрерывной пешеходной съёмки, так и для аэрогаммаспектрометрии с применением БПЛА. В качестве носителя может выступать Matrice 600, 1000 (DJI, Китай), Pegas (Аэродин, Санкт-Петербург) или другие надёжные носители, способные поднять в воздух массу более 5,97 кг. При съемке с использованием БПЛА точность 15% может быть обеспечена с осреднением по участкам полёта 50 метров (при скорости полёта 5 м/сек).

Библиография / References

- 1. https://ekosf.ru/product-category/radiatsionnye-faktory/spektrometry-gamma-izlucheniya/
- 2. https://aliexpress.ru/popular/gamma-spectrometer.html
- 3. https://multi-pribor.ru/product/
- 4. https://www.doza.ru/catalog/spectrometers/3/
- 5. https://analytprom.ru/gamma-beta-spektrometr-mks-at1315/
- 6. Артемьев В.А. Гусев В.П. Павликов В.А. Шабунин Л.И. Патент RU 2130624 C1 СПОСОБ СТАБИЛИЗАЦИИ ЭНЕРГЕТИЧЕСКОЙ ШКАЛЫ СПЕКТРОМЕТРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1999.05.20

